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Abstract—Based on the second-order model suggested by Kolovandin and Martynenko (Heat/mass trans-
fer in homogeneous turbulence, 9th Int. Heat Transfer Conf., Jerusalem (1990)) numerical modelling of
the nearly homogeneous turbulence of the velocity and transported passive scalar fields is considered. The
work is aimed at a detailed study of the effect exerted by the basic factors of turbulence generation—the
gradients of the averaged velocity and scalar values—on the evolution in time of the statistical characteristics
of turbulence which, within the framework of the second-order model, determine the processes of turbulent
momentum and heat transfer at arbitrary turbulent Reynolds and Peclet numbers.

1. INTRODUCTION

THE PROGRESS in numerical modelling of turbulent
heat or mass transfer on the basis of second-order
models is much inferior to that made in velocity field
simulation. This can be ascribed to a number of
reasons: insufficient knowledge of the elementary
events of transport realizable in kinematically simple
forms of a turbulent scalar field, scarce experimental
data on the dynamics of the statistical parameters of
turbulent transport (the variance and fluxes of the
scalar, the rate of ‘smearing’ of scalar fluctuations) in
a developing turbulence at arbitrary turbulent Reyn-
olds and Peclet numbers, etc. It is not improbable that
some of these reasons could be obviated by direct
modelling of turbulent transfer based on the numeri-
cal solution of three-dimensional non-stationary Nav-
ier-Stokes and transport equations should there have
also been a priori confidence that the numerical time
realization of a respective function at the given point
of space adequately fitted the real physical process.
Such an adequacy could be successfully checked by
second-order models involving exact asymptotic solu-
tions that could be obtained with the alternative, say
spectral, technique. In other words, there should exist
a feedback between the method of direct numerical
simulation and modelling based on ‘adequate’ second-
order models which could make it possible to perfect
both approaches aimed ultimately at the solution of
the practical problems of turbulent transfer.

The present paper deals with the solution of ‘test’
problems concerning the dynamics of the nearly
homogeneous turbulence of velocity and scalar fields
on the basis of the second-order model suggested in
ref. [1]. The nearly homogeneous turbulence here is
meant to be such which is generated by constant,
transverse to the motion of fluid, gradients of the
mean values of velocity and transported scalar. The
reference to this kind of turbulence is due, on the one
hand, to its relative simplicity (no factor of turbulent
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diffusion in model equations) allowing comparison
with the data on direct numerical simulation and, on
the other hand, to its realistic approximation to the
shear flow turbulence.

2, THE DYNAMICS OF A NEARLY
HOMOGENEOUS VELOCITY FIELD

The second-order model of a nearly homogeneous
turbulent velocity field consists of a model differential
equation for the Reynolds stress tensor

D__ uu
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+b,00,07S, + (Bubiy+7.6,)Pul =0 (1)
and an equation for the turbulent kinetic energy dis-
sipation rate
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where g% = u7 is the doubled kinetic energy turbulence
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is the second-rank tensor of the rate of Reynolds stress
generation due to the mean shear (in the present case
of nearly homogeneous turbulence 0U,/dx, = dU,/
dx, = const.)
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is the deviator of the Reynolds stress tensor
1/oU, U,
=2+
voo2\ox;  ox;




12 V. UL BONDARCHUK ef al.
NOMENCLATURE
F,,, F,» interaction functions in equation tor ‘; squared Taylor microscale of velocity
g, field, Svg-/e,
F, interaction function in equation for ¢, v kinematic viscosity
L, Taylor macroscale of scalar field, K molecular diffusivity

6(q%) " 21,
P, turbulent Peclet number, (¢°)"*4,/x
time scale ratio, t,/t,
time scale ratio in the final stage of decay
of nearly homogeneous scalar field in
isotropic velocity field
turbulent Reynolds number, (¢°)"24,/v
doubled kinetic energy of turbulence, u”
T mean value of a scalar
t pulsation of a scalar
= scalar variance
u, vector of velocity fluctuations
w1 vector of turbulent flux
wu, second-rank tensor of Reynolds stresses

awo

1\

t

vl

U, vector of mean velocity

X, Cartesian coordinate (i = 1, 2, 3)
X longitudinal coordinate

X5 transverse coordinate.

Greek symbols

g, rate of scalar variance smearing

£, rate of kinetic energy of turbulence
dissipation

A2 squared Taylor microscale of scalar field,
okt [e,

molecular Prandtl number, v/k
asymptotic value of the turbulent Prandtl
number in the final stage of
degeneration of a nearly homogeneous
scalar field in an isotropic velocity field

T time

T, scalar time scale, r°/g,

T, velocity time scale. ¢7/e,.

O Tawo

Subscripts
i, J. k tensor indices
0 absence of mean scalar

$ strong turbulence, R, » 1

T large-scale eddy

t scalar

w weak turbulence, R, « 1.
Superscripts

averaging operation

o virtual origin

* homogeneity

* isotropy.

is the tensor of mean shear

b, =3P, /Pu—30,
is the deviator of the tensor P,

¢, =3D,[Pyu—F,

is the deviator of the tensor D,
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is the ratio of the turbulent kinetic energy generation
to the rate of its dissipation
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is the interaction function of turbulent vortices of
different scales

d, = 1-2/(1+/(1+6,/R})
where
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With some assumptions, the above model may yield
exact asymptotic solutions for the dynamics of a
nearly homogeneous turbulence.

2.1. The dynamics of a strong (R; » 1) nearly homo-
geneous velocity field

Consider turbulence evolving in time and being gen-
erated by a constant, transverse to the fluid motion,
mean-velocity gradient dU, /dx. = const.

On the assumption of equilibrium of large vortices
[1],i.e. at

te _vi/q’ _ (~uw/(dU,/dxs))/g*
Woogie 7’fe.

=, = const.

(3)
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equations (1) and (2) take on the form
D e
——;qz = 2(nllsf142 - 1)q2/fu
D
D1t

‘Eu = g’.z*_z_nusflf (4)

where 7, = 7, dU,/dx, and the subscript ‘s’ denotes a
strong turbulence.

It can be shown that the asymptotic (for 7> 1)
solution to system (4) has the form

_ P—1{ wu,
q2 = qlsirf €Xp |:2 '4_ <_ u—l—lfh> (f_fref):l
P, q°
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where g2, is a fixed value of ¢°.
The remaining characteristics of turbulence can be
represented as

_ 5
Pu = (,97,::*—2) =§
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oV 5
(_ u]ljh) = (nusfu)2 = nus('g'-ut*_z) = gnus

g’ ~0.55, uijq® ~0.23 ()
where n,, ~ 1.5x 1072 is an empirical factor taken
into account in the relation for b,.

Thus, the evolution in time of a strong nearly homo-
geneous turbulence for 7> 1 is characterized by an
exponential growth of kinetic energy and by the
asymptotic values of the parameters P,. 7, and
(—,%3/9°%). According to solution (5), in this case the
turbulent Reynolds number

2172 242
g’ A 5@ 5 1
R = 2 =2 2
* v? 'y v dU,/dx, Tud

is also an increasing function of 7. Thus, the transition

of the initially strong developing nearly homogeneous
turbulence to the final stage is impossible.

To check the validity of solutions (5) and (6), the
Cauchy problem was solved numerically at the initial
values of turbulence parameters corresponding to the
experiments of Champagne et al. [2], Harris et al. [3],
Tavoularis and Corrsin [4], and Karnik and Tavou-
laris [5]. The results of numerical modelling are pre-
sented in Figs. 1—4. Tt is seen from Fig. 1 that, depend-
ing on the initial conditions, at the start of evolution,
the kinetic energy of turbulence

E =g h*/(dU,/dx,)?

where £ is the lateral dimension of a channel, can be
a decreasing function of time

. dU, _x(h
‘c—‘cdx2 ——h—<UCdU1/dx3>

where U, is the centreline velocity. Such a situation is
realizable at the initial values of the shear parameter
P, smaller than unity. At large values of 7, the function
E approaches the exponential asymptotics (5) attained
only in some of the experiments considered.

As presented in Fig. 2. the evolution of the velocity
time scale T, = (¢%/¢,) dU,/dx, related to the Taylor
microscale of length A2 = 5vg°/e, by the relation 7, =
iR.(A,/h)?, where R, = (dU,/dx,)h*/v is the mean
gradient-based Reynolds number, shows that with
7 > | the parameter 7, tends to the constant universal
value indicated in solution (5). Unfortunately, the
lack of experimental data does not allow one to judge
the adequacy of the modelling of this parameter.
Nevertheless, it can be said that the individual data of
refs. [2, 3] fit the numerical curves, whereas the data
of ref. [4] differ significantly from numerical results.
Here, it should be borne in mind that the rate of
dissipation is measured not directly but with resorting
to the hypothesis of local isotropy thus allowing the
occurrence of considerable errors in such a sub-

20 30

Fi1G. 1. Evolution of the kinetic energy of nearly homogeneous strong turbulence: O, undisturbed flow:
A, M=25;0,M=5][5]; * ref. [4]; +, ref. [3]; ©, ref. [2] ; ——, numerical modelling.
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FiG. 3. Evolution of the ratio of the rate of turbulence energy generation to that of dissipation, For
notation see Fig. 1.

stantially anisotropic field as is the nearly homo-
geneous turbulence being investigated.

x (dU,/dx,)/e, presented in Fig. 3, shows that at large
values of 7 this parameter also tends to the universal
constant value indicated in solution (6). As regards the
comparison between the predicted and experimental
data, the same conclusion can be made as that for the
previous function £, (or 4i2).

As presented in Fig. 4, the evolution of normal
and tangential Reynolds stresses related to the kinetic
energy of turbulence, ie. of the parameters
K., = ui/g’), Kn= (ug/qz)’ K=~ (17'7:/«72)-
shows the validity of asymptotic relations (6); as
regards the empirical data, the indicated asymptotic
was attained only in one realization of Karnik and

Tavoularis® experiment in which the shear was pro-
duced by a multi-layered fluid flow without a tur-
bulizor.

All the experiments indicated above were carried
out for large initial turbulent Reynolds numbers that
prevented the possibility of transition to a weak tur-
bulence.

2.2. The dynamics of a weak (R, <« 1) nearly hono-
geneous velocity field

On the condition that at the start of evolution the
turbulence, generated by the lateral velocity gradient,
is weak and with assumption (3), the system of equa-
tions (1) and (2) admits an asymptotic (for ¥ 1)
solution such as (5) where the coefficient F** is sub-
stituted by the coefficient FX* = 14/5 and #, by

HW
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A~ 1.25%x 10 7lic.

P,—1 U,
q4* = qar €xp [2 5 (* s > f]
u q-

1
f,=——(F*-2)
n

uw

= (FA*-2)

Uw

(— “i‘> = 1 (F 2*-2) ™
7
ullg’ ~0.62, ul/g® ~0.25, uijg’ ~0.13. (8)
The fundamental difference of solution (7) for ¢*
when R, « 1 from solution (5) consists of the fact that
in the case of the weak turbulence considered the
exponent is the negative quantity the value of which
is dictated by the coefficients FX* and n,,. Thus, in
weak nearly homogeneous turbulence ¢° is a decreas-
ing function of time.

Unfortunately, experimental realization of the
mode of a weak nearly homogeneous turbulence is
unknown to date. Such a situation was the object of
theoretical studies by Deissler [6] (which provided the
assessing value for the above given coefficient n,,,).
Comparison of the aforegoing asymptotic solutions
with the results of Deissler’s analysis shows that the
data for ¢* and u,u, agree, whereas relations (8) for
normal stresses are inconsistent with Deissler’s data

according to which (17/g*) — 0 when 7 > 1.

2.3. The dynamics of a nearly homogeneous velocity
field at arbitrary R, values

As indicated above, at large initial values of the
parameter R; the transition of homogeneous tur-
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bulence to the final stage i1s impossible. At the same
time, the feasibility of an asymptotically weak tur-
bulence in principle, relations (7) and (8), raiscs the
question whether or not the transition to the final
stage is possible at moderate initial values of R,. To
resolve this question, a conventional numerical exper-
iment was carried out with the system of equations
(1) and (2) at the given initial values for the variables
corresponding to ref. [4] and at different initial tur-
bulent Reynolds numbers

R} = 5R.ET,.

The results of numerical simulation of the nearly
homogeneous turbulence evolution are presented in
Figs. 5-8 for RY = 150, i.e. at R) = 4.6. As is seen
from Fig. 5, at the start of evolution the parameters
E and R, increase just as in the case of a strong
turbulence. When R; attains the value approximately
equal to 6.5, there appears a characteristic inter-
mediate stretch over which all of the parameters vary
slowly (see Figs. 6-8). Beginning from R, ~ 6 a rapid
transition is observed to the final stage which com-
mences at R, ~ 0.1. At great values of 7 the numerical
solution approaches the asymptotics of the final stage,
relations (7) and (8).

Thus, the transition of the evolving nearly homo-
geneous turbulence to the final stage of decay is
feasible at moderate initial values of the turbulent
Reynolds number not exceeding R, ~ 6.5.

3. THE DYNAMICS OF A NEARLY
HOMOGENEOUS SCALAR FIELD

The second-order model of a nearly homogeneous
scalar field [1] consists of a model differential equation
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FiG. 5. Evolution of kinetic energy and turbulent Reynolds number R, = R? up to the final stage of
degeneration.
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for the turbulent flux vector

D _ 1
—ut—P,+ ut=0

9
Dr M

w

and exact equation for the mean squared fluctuations
of a scalar
D - =
421 —-Plg, =0 (10)
Dz

and of a model equation for the rate of ‘smearing’ of
scalar fluctuations

b S 2P 1
Do, (2P,,s,,/q e 7@) k

F(F Xe Jg* +F Je,/t)e, =0 (11)

where

is the vector of the flux generation rate due to the
mean lateral shear and to the transverse gradient of
the mean value of the scalar

1 1 1
= (—d)— +d—

ut urs wuw

is the quantity reciprocal of the mixed time scale

1 R
= ’:(4—5?7;:*)+ — (u%/q*)R_p“] 6l d
Iuts A

1 2P, ! B
Trerw = 1_1—{—0’ [ﬁ_(f‘_l)P:c]+f2R 81‘/41

F* sk p 2[—’,
Fr=FLF-2P +d, [ /a2
4 4
Fir=FI =2+ d, FE=243d,

= +
3 4 EARE 2
f= ["' ( ¥ 5) 3 (R - 5) 31»} Rowe
4 2P \ | 2P, 3\ R
fi= §<(1 - Tl'&)/l +o><RaW°“ §> R...

where

1 20 Y2 L1/
-53[1“2(1‘+;> to ]/
20 i 12
[l“z(m) e ]

is the parameter of the scale ratio in the final stage of
degeneration of the nearly homogeneous scalar field

in the isotropic velocity field [7]

_31—0/_1 26>iz
10 6 || \l+e

is the turbulent Prandtl number in the final stage of
degeneration of the nearly homogeneous scalar field
in the isotropic velocity field. o = v/x is the molecular
Prandtl number

TTano

1 1 =
= ._,“ +3Pu,‘l('y’u}:*‘—2)}*

B > 1077,
nl“» n’b(‘

The above second-order model of a nearly homo-
geneous scalar field envisages any means of the scalar
field generation with any way of velocity field gener-
ation. In the simplest case, a homogeneous isotropic
degenerating velocity field transports a homogeneous
isotropic degenerating scalar field. In this case, the
asymptotic (for R, » 1, P, » 1) solution for the evol-
ution of the velocity and passive scalar fields can be
presented [8] in the form of power ‘laws™:

3

g* = (@ E)IIE (g g0y TS D
T, = (F -2+
't"z' — (t“:)o(,[o)zk";(.#"fn ZJ(T_‘_TU)A2R"{(.'FM':*—ZP
T, = (F X —2)(t+1°)/R°
LY = const.,, R = R®= const. (12)
where
. 1 ¢ =

T == e
e ok o
F us -2 &

is the virtual origin.

When R, « 1, P,« 1. the system of isotropic
equations has the well-known Loitsyanskiy—Corrsin
solution.

In a more complex case of P, = 0 and P, # 0 the
velocity field is degenerating isotropic, whereas the
field of a transported scalar is the simplest nearly
homogeneous one. Finally, at P, # 0 and P, # 0 the
velocity and scalar fields are nearly homogeneous in
the general sense.

To qualitatively analyse the evolution of a nearly
homogeneous scalar field, introduce the asymptotic
(for R, » 1, P,» 1 and R, « 1, P; « 1) hypothesis
concerning the equilibrium of large scalar ‘vortices’
[1] which is analogous to hypothesis (3)

Tr_ Krlq” _ (—uxt/(dT)dx,))/q° — n, = const. (I3)
T, F/a, F/s, ' o

presumably valid both at £, = 0 and at B, # 0. [t can
be shown with the aid of this hypothesis that the
equation for 1, = 17/g, acquires the form of equation
(4) for 7,. i.e. in the evolving ultimately strong or
ultimately weak nearly homogeneous velocity field

the following condition holds:

R = 1,/1, = const. (14)
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3.1. Evolution of a nearly homogeneous scalar field in
a decaying isotropic velocity field

Consider the evolution of a scalar field generated
by a constant transverse mean scalar gradient in a
decaying isotropic velocity field in two limiting cases:
strong turbulence, i.e. when R; » 1, P, » 1, and weak
turbulence, i.e. when R, « 1, P, « 1.

In the case of strong turbulence, the velocity field
is determined by solution (12) for ¢* and 7,. With the
use of hypothesis (13), i.e. at

~ dTy —
P, =ntso< ) T{ZqZ/tZ

dx,

(15)
where the subscript ‘0’ denotes P, = 0, it can be shown
that the solution of equation (10) for Z has the form
Py [(t_z)o _ (9:’.)0](f+ 1)~ RIF - 2

F(@)O(F4 1)IFE-IES-D (16)
where

Fi-2) 1
R (FXF-3+R)

2
x (g) (g7)°(z°)?

('92)0 = Ny

]

T =1/1°

If the initial conditions are such that (9%)° « (£°)°,
then relation (16) goes over into isotropic solution
(12). For 7 » 1 this relation acquires the form

;/_g»] = (32)0(1*)2(.9'“:'»3)/(.9',;'—-2) — (92)0({)4/5.
an

This is an asymptotic (for 7> 1) solution for the
evolution of 1> when P, = 0, R, > 1, and P; » 1. With
the use of this solution, relation (15) takes on the form

_ (F2*-2)
= - = 1
P’/f > 1 I+ R° ( 8)

which indicates that at large times of the evolution of
a strong nearly homogeneous scalar field in a strong
degenerating velocity field an equilibrium is attained
between the generation and ‘dissipation’ of scalar

fluctuations. In this case also attained is the asymp-
totic value for the correlation coefficient

2 _ 1
P2 = 3nxscPr~
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In the limit case of a weak turbulence, i.e. when
R, « 1 and P, « 1, the velocity field is also described
by relations (12) for F and t,, where 7 >» 1°, whereas
the parameter & ** is substituted by the parameter
F Xx* = 14/5. With the use of hypothesis (15), i.e. at

the asymptotic solution of differential equation (10)

for ¢ has the form

s Fwey 1 (ary
meo (y::v* -3+ Rawo) dx:

i1 = Biwo

X (g7)° ()} (BT F VT (7 (20)

which is coincident with the form of Dun and Reid’s
analytical solution [7]. With this solution taken into
account, the asymptotic relation for the parameter P,
can be presented as
Pt = =1 _(3—'9-;;&*)/R1w0
JT>» 1

and the correlation coefficient can be given in the form

1 26 V2T
2
=—|1-—
o oMl
20_ 172 1
— — re 2
[1 2(1+a> to ] (22)

also following from Dun and Reid’s solution.

To check the validity of asymptotic solutions (17)—
(19) for R;>» I, P, >» | and the adequacy of model
(9)—(11) at arbitrary turbulent Reynolds and Peclet
numbers, the Cauchy problem was solved numerically
for the system of differential equations (1), (2) and
(9)-(11) for P, = 0 under the initial conditions cor-
responding to the experiment of Sirivat and Warhaft
[91.

Figures 9 and 10 present numerical and exper-
imental results for the evolution of the velocity field
parameters £ = ?/Ui and 7, = (c?/zu)U‘p/M, where
U, is the flow velocity, M the dimension of a grid cell.
In accordance with the experiment, two realizations
of the nearly homogeneous scalar field were fulfilled
against the background of an almost isotropic degen-
erating velocity field by means of a heated grid (‘man-
doline’) and a heated honeycomb (‘toaster’).

Comparison of the numerical and experimental
results on the evolution of the scalar field parameters
in the ‘mandoline’ wake is presented in Figs. 11-14
for two different values of d7/dx,. As follows from
Fig. 11, which demonstrates the development of
parameter 0 = £-/(dT/dx,)*M? in time T=x/M,
in one of the above experiments the condition
(9%)° « (1%)° was realized under which the scalar
field initially behaves as an isotropic one (see solu-
tion (16)). Further away the parameter 6 approaches
the asymptotic power ‘law’ (17). Within the range of
the 7 values studied, there is an excellent agreement
between the prediction and experiment. The situation
is less satisfactory in Fig. 12 for the time scale
T, = (’/e)U./M = (6/6)R.(4/M)*, where R.=
U, Mjv, A} = 6kt’/e,, which probably can be as-
cribed to a not very accurate measurement of the
scalar field ‘dissipation’ rate. It seems that the same
reason is responsible for the fact that along with a
good agreement between prediction and experiment
for the lateral heat flux (Fig. 13), there is some dis-
crepancy between the results compared for the par-

@n
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FiG. 9. Evolution of the kinetic energy of isotropic turbulence: O, mandoline; [J, toaster [9); —,
numerical modelling.

400

40 -
30 — 100 200

FiG. 10. Evolution of the time scale of velocity fluctuations. For notation see Fig. 9.
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FiG. 11. Evolution of mean squared temperature fluctuations in the mandoline wake. Notation is that of
ref. [9].
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FiG. 12. Evolution of the time scale of temperature fluctuations. Notation is that of ref. [9].
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F1G. 13. Evolution of the transverse heat flux ¢ = —u,7/U M dT/dx, in the mandoline wake. Notation
corresponds to that in ref. [9].
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F1G. 14. Evolution of the ratio of the generation rate of temperature fluctuations to that of dissipation in
the mandoline wake. Notation is that of ref. [9].
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ameter P, of the ratio between the rates of generation
of the 1° parameter and of its dissipation (Fig. 14).

A “pure’ experiment {as regards the linearity of the
mean temperature profile) is the experiment with
another type of generator of temperature fluc-

tuations—a ‘toaster’. Comparison of numerical and
experimental results presented in Figs. 15-18 reveals
their more rigorous agreement in the initial region of
scalar field development.

Both realizations considered (‘mandoline’ and
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100 200

Fic. 15, Evolution of temperature fluctuations in the toaster wake. Notation is that of ref. [9].
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FiG. 16. Evolution of the time scale of temperature fluctuations in the toaster wake. Notation is that of
ref. [9].
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FiG. 17. Evolution of the transverse heat flux in the toaster wake [9].
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FiG. 18. Evolution of the parameter P, in the toaster wake.

‘toaster’) were fulfilled at moderate turbulent Reyn-
olds and Peclet numbers at which, however, the
asymptotic solution for a strong turbulence (17)-(19)
still could be satisfied as follows from the comparison
of numerical and experimental data. At large values
of the longitudinal coordinate (or at large evolution
times), in view of the further decrease of R, and P,,
the turbulence evolution should be substantially non-
similar until inertia effects become so small that the
scalar field turbulence dynamics regains its similarity
which obeys the laws typical of the final stage of
degeneration (20)—(22).

The transition to the final degeneration stage was
investigated numerically by solving the problem at
hand up to the evolution times at which asymptotics
(20)—(22) are fulfilled. In what follows, the results of
the Cauchy problem numerical solution under the
initial conditions of ref. [9] for ‘mandoline’ at
dT/dx, = 7.48°C m~! are presented.

The results of the numerical experiment given in
Fig. 19 as the plots of E and 7, vs time show that the
transition of the isotropic velocity field turbulence to
the final degeneration stage occurs when R, ~ 0.25.
The evolution of the mean squared temperature fluc-
tuations in Fig. 20 shows that as the turbulence energy
decays the temperature fluctuations first increase (in
accordance with the asymptotics of the strong scalar
field turbulence (17)) and then, at sufficiently great
evolution times (moderate values of R, and P,) the
transition to the final stage takes place. At 6 ~ 1 this
occurs at the same time values of 7 as does the final
stage of velocity degeneration and is given by asymp-
totics (20). Presented in this figure are also the results
of the numerical experiments for great and small
molecular Prandtl numbers (recall that the second-
order model (9)-(11) is universal with respect to this
parameter). It can be easily seen that with o > 1 the
final stage sets in at larger values of ¥ and with ¢ « 1

1Q 10

T

F1G. 19. Numerical modelling of the evolution of turbulence energy and of time scale up to the final stage
of degeneration.



24 V. U. BONDARCHUK ¢t ual.

500.000

100.000 ¢

10.000 f

0,100

0.010¢

0.00! : g
10 10

FIG. 20. Numerical modelling of the evolution of temperature fluctuations at d¢/dx, = const. in the
isotropic velocity field up to the final stage of degeneration at different molecular Prandtl numbers:
1.6 =073:2,0=10"%;3.0 =10

at smaller values of T as against the case with ¢ ~ 1.

The data given in Figs. 21-25 display the evolution
(up to the final degeneration stage) of the remaining
scalar field turbulence parameters: the time scale 7,
(Fig. 21), the time scale ratio R=T,/T, (Fig. 22),
the lateral heat flux ¢ (Fig. 23): the parameter P,
representing the ratio of rates of the generation and
‘dissipation’ of temperature fluctuations (Fig. 24), and
the correlation coefficient p,,.

The above numerical experiment was undertaken
to show, firstly, that the decaying isotropic velocity
field at large evolution times drives the nearly homo-
geneous scalar field to the final stage which obeys the
asymptotic solution of Dun and Reid [7]: secondly,

10

that there is an effect of the molecular Prandtl number
on the degeneration of a weak nearly homogeneous
scalar field turbulence.

Note that as the turbulent Reynolds and Peclet
numbers are interconnected

the scalar field ‘inertia’ (the parameter P,) depends,
apart from R;, also on the parameters ¢ and R, i.e. at
high values of R, the parameter P, can turn to be
moderate or even small (at very small values of ) ;
conversely, at small values of R; the parameter P, can
be rather large (at very high values of ¢). Such a

15 l ‘7
10 10

F1G. 21. Results of numerical modelling for the evolution of the time scale of temperature fluctuations.
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F1G. 22. Results of numerical modelling for the evolution of the ratio of time scales.

F1G. 23. Results of numerical modelling for the evolution of the transverse heat flux.
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FIG. 24. Results of numerical modelling for the evolution of P, parameter.
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F1G. 25. Results of numerical modelling for the evoluuon of velocity-temperature correlation coefficient
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discrepancy between the inertia of the velocity and
scalar fields may lead to a non-trivial degeneration of
the scalar field, especially in the region of moderate
values of R,, asis demonstrated in Figs. 20-25, namely
a fast deviation of the scalar field parameters from
the asymptotics of strong turbulence for ¢ < 1, an
extension of the strong scalar field turbulence asymp-
totics to the region of moderate values of R, foro > 1.
This fact is of a fundamental importance for under-
standing the process of heat and mass transfer not
only in the simplest constant gradient scalar field but
in the case of substantially inhomogeneous turbulence
of shear flows.

3.2, The evolution of a nearly homogeneous scalar field
in a nearly homogeneous velocity field

The nearly homogeneous turbulence of the velocity
and scalar fields is an approach to actual heat and
mass transfer processes. The dynamics of such a vel-
ocity-scalar composition is described jointly by
models (1), (2) and (9)-(11).

To qualitatively analyse the dynamics of a nearly
homogeneous scalar field in an evolving nearly homo-
geneous velocity field, consider two limiting cases:
Ri»>1,P,»land R, «1,P, « 1.

In the case of a strong turbulence the velocity field
is described by asymptotics (5) and (6). Using
relations (13) and (14) in equation (10) for 7 it can
be shown that its asymptotic (for ¥ » 1) solution has
the form

_ny @Tjdx)t (FE-2)
>, @U A RS

]

g7 (23

Fr R B

With this solution taken into account, the asymp-
totic relation for the parameter P, can be given as

- 3RS (24)

analogously to relation (18). Then the asymptotic

= 1+(F 3"

value of the correlation coefficient is attained

p3 = ns(q*/u3) P, (25)
where the asymptotic quantity ¢°/u3 is defined by
relation (6).

In the case of a weak turbulence the velocity field
is determined by asymptotic relations (7) and (8). It
can be shown [1] that asymptotic relations for the
scalar field have the form of relations (23)-(25) where
the strong turbulence coefficients are replaced by those
of weak turbulence : n,, by n,,,, 1., by n, FX* by FX*,
R? by R,,,.

To check the validity of the asymptotic solutions
and the adequacy of the model of arbitrary values of
the parameters R,, P,, o for P, 0 and P, # 0, the
Cauchy problem was solved numerically for the full
system of equations (1), (2) and (9)~(11) under the
initial conditions that correspond to the experiment
of Tavoularis and Corrsin [4].

Figures 26-28 compare numerical and experimental
data for the temperature field parameters

dr / du,
@—f/ (dx;)h T.= (a“) R=TJT.

. jdu, dr .
9= = ’/dh o Pi=

/
‘uztgg/ﬁl = qT:/@
where h s the lateral dimension of the region occupied
by the flow. As follows from the plots, the model
furnishes quite an adequate description of the exper-
iment undertaken with a fairly strong turbulence
(R, =~ 2x10%). Unfortunately, the range of 7 values
in the experiment turned to be insufficient for the
parameters to approach the asymptotics of a strong
turbulence (as clearly displayed by the data of Figs.
26-28).

It has been already noted in Section 2 that in the
case of initially strong nearly homogeneous tur-
bulence the transition to the final stage is impossible.
This is also true for a scalar nearly homogeneous
field. To investigate the approach of the scalar field
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parameters to the final stage asymptotics, a4 con-
ventional numerical experiment was made to follow
the development of a scalar field in the weak velocity
field which was considered in Section 2 (Figs. 5-8).
The results of this experiment for different molecular
Prandtl numbers are presented in Figs. 29-32. From
the plots given it follows that the analytical asymp-
totics of the final stage of a weak nearly homogeneous

V. U. BONDARCHUK ¢i dl.

scalar field is fulfilled. The effect of molecular Prandtl
number reveals in the extension, as compared with the
case o =~ 1, of the final stage of & > | and its relatively
early occurrence for ¢ « 1. This effect can be ex-
plained physically : the processes of turbulent exchange
enhance with a decrease in ¢ and diminish with
an increase in o. This is most clearly evidenced by the
data for the turbulent Prandtl number in Fig. 32. Tt
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F16. 29. Numerical modelling of the evolution of temperature fluctuations variance, @, at d7/dx = const.,
dU/dx, = const. and moderate values of R; up 1o the final stage of degeneration: 1,6 = 0.73; 2,6 = 107%;

3.0 = 10°%
20+
ey
E-‘ 10—
¢
0 100 200

F16. 30. Numerical modelling for the evolution of the time scale of temperature fluctuations: |, o = 0.73;
2.6=10"":30=10%
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FiG. 31. Numerical modelling for the evolution of the time scale of ratio, R: 1, ¢ = 0.73: 2, 0 = 1077 3,
o= 10%
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F1G. 32. Numerical modelling of the evolution of the turbulent Prandtl number: 1,6 =0.73;2,0 = 107 2;
3,0 = 10°.

should be noted that these data are in contradiction
with the results of Deissler’s spectral analysis [10]
according to which with 7> 1 the parameter o tends
to unity irrespective of the magnitude of the molecular
Prandtl number. The validity of the results obtained
for the asymptotics 7> 1 could be judged from a
direct numerical experiment concerned with mod-
elling the evolution of a weak nearly homogeneous
scalar field in a weak nearly homogeneous velocity
field. Unfortunately, to the authors’ knowledge, such
data are not available.

4. CONCLUSIONS

The present work was aimed at the application of
the earlier proposed [1] dynamic second-order model
of the nearly homogeneous velocity and passive scalar
field, which is universal with respect to the turbulent
Reynolds and Peclet number and to the molecular
Prandtl number, to the ‘test’ problems concerned with
the evolution of the fields considered up to the final
degeneration stage. The following problems have been
considered :

(1) evolution of a strong turbulent velocity field
generated by a constant, transverse to the flow, gradi-
ent of the mean velocity (nearly homogeneous tur-
bulence) ;

(2) evolution of a nearly homogeneous turbulent
velocity field up to the final stage of degeneration;;

(3) evolution of a strong nearly homogeneous scalar
field in a strong decaying homogeneous isotropic vel-
ocity field ;

(4) evolution of a nearly homogeneous scalar field
in a decaying homogeneous isotropic velocity field up
to the final stage of degeneration;;

(5) evolution of a nearly homogeneous scalar field
in a strong nearly homogeneous velocity field ;

(6) evolution of a nearly homogeneous velocity field
in a weak nearly homogeneous velocity field up to the
final stage of degeneration.

When possible, numerical results were compared
with experimental data or with the results of analyses
made by other authors. As the numerical results at
moderate turbulent Reynolds and Peclet numbers and
at arbitrary molecular Prandtl numbers are new, it is
desirable that they were compared with the data of
direct numerical simulation on the basis of three-
dimensional non-stationary Navier—Stokes and trans-
port equations. Unfortunately, such data are lacking
at present.

Since the nearly homogeneous velocity and scalar
fields represent, to a certain extent, the approach to
the shear flow turbulence, the problems considered
make it possible to analyse the dynamics of elementary
events of turbulent transfer in actual turbulent incom-
pressible fluid flows.
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MODELISATION DU DEVELOPPEMENT DES CHAMPS DE VITESSE ET DE
SCALAIRE POUR LA TURBULENCE PRESQUE HOMOGENE

Résumé—On considére, a partir du modele au second-ordre suggéré par Kolovandin et Martynenko
(Heat/mass transfer in homogeneous turbulence, 9th Int. Heat Transfer Conf., Jerusalem (1990)), la
modélisation numérique de la turbulence presque homogéne des champs de vitesse et de scalaire passif
transporté. On étudie en détail 'effet exercé par les facteurs principaux de la génération de la turbulence—
les gradients des valeurs moyennes de vitesse et de scalaire—sur I’évolution dans le temps des caractéristiques
statistiques de la turbulence qui, dans le cadre du modéle au second ordre, déterminent les mécanismes du
transfert turbulent de quantité de mouvement et de chaleur pour des nombres quelconques de Reynolds
et de Peclet.

MODELLIERUNG DER ENTWICKLUNG EINER NAHEZU HOMOGENEN
TURBULENZ DER GESCHWINDIGKEITS- UND SKALARFELDER

Zusammenfassung—Auf der Grundlage des Modells zweiter Ordnung von Kolovandin und Martynenko
(Heat/mass transfer in homogeneous turbulence, 9th Int. Heat Transfer Conf., Jerusalem (1990)) wird
die nahezu homogene Turbulenz der Geschwindigkeits- und der transportierten passiven Skalar-Felder
numerisch modelliert. Ziel der Arbeit ist eine detaillierte Untersuchung des grundlegenden Einflusses der
Turbulenzerzeugung (die Gradienten der mittleren Geschwindigkeit und der skalaren Groflen) auf die
zeitliche Entwicklung des statistischen Turbulenzverhaltens. Diese bestimmen—innerhalb des Rahmens
des Modells zweiter Ordnung—die Vorgénge beim turbulenten Impuls- und Wérmetransport bei beliebiger
turbulenter Reynolds- und Peclet-Zahl.

MOJEJNUPOBAHUE OJJHOPOAHON TYPBVJIEHTHOCTHU CKAJISIPHOT'O I10JIA

Asmorsums—Ha ocHOBe npeiokeHHOf B npeaninyiuei pa6ote [1] Monenn BTOporo nopsaxa paccMar-
PHBAETCs YACICHHOES MOAEIHPOBAHHE NHHAMHEKA 06061eHHO-0IHOPOAHON TYPOYICHTHOCTH HOJNEH CKO-
POCTH H IEpEeHOCHMOTr0 NaccABHOTO ckaJipa. PaGoTa Hanpas/ieHa Ha JeTanbHOE HCCIEJOBAHAE BIHSHHA
OCHOBHBIX (PakTOPOB TeHEPHPOBAHHA TYPOYJICHTHOCTH—TPAJHEHTOB OCPEAHEHHBIX 3HAYEHHH CKOPOCTH
H CKaJiipa Ha 3BOJIOLHIO BO BPEMEHH CTATHCTHUCCKMX XAPAKTEPHCTHK TYpOYJICHTHOCTH, ONPEREIAIO-
WYX B paMKax MOJENH BTOPOTO MOPANKa Nnpouecchl TyPOYyJIeHTHOTO NepeHoca HMITYJILCa M TEIUIA WM
Macchl PH MPOH3BOJILHKIX 3HAYeHHAX TypOynenTHbix wncen Pelimonbaca u Ilekne m MoiexyaspHoro
gucna Ipanaras.



