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Abstract-Based on the second-order model suggested by Kolovandin and Martynenko (Heat/mass trans- 
fer in homogeneous turbulence, 9th Int. Heat Transfer Conf., Jerusalem (1990)) numerical modelling of 
the nearly homogeneous turbulence of the velocity and transported passive scalar fields is considered. The 
work is aimed at a detailed study of the effect exerted by the basic factors of turbulence generation-the 
gradients of the averaged velocity and scalar values-on the evolution in time of the statistical characteristics 
of turbulence which, within the framework of the second-order model, determine the processes of turbulent 

momentum and heat transfer at arbitrary turbulent Reynolds and Peclet numbers. 

1. INTRODUCTION 

THE PROGRESS in numerical modelling of turbulent 
heat or mass transfer on the basis of second-order 
models is much inferior to that made in velocity field 
simulation. This can be ascribed to a number of 
reasons : insufficient knowledge of the elementary 
events of transport realizable in kinematically simple 

forms of a turbulent scalar field, scarce experimental 
data on the dynamics of the statistical parameters of 
turbulent transport (the variance and fluxes of the 
scalar, the rate of ‘smearing’ of scalar fluctuations) in 
a developing turbulence at arbitrary turbulent Reyn- 
olds and Peclet numbers, etc. It is not improbable that 
some of these reasons could be obviated by direct 
modelling of turbulent transfer based on the numeri- 
cal solution of three-dimensional non-stationary Nav- 
ier-Stokes and transport equations should there have 
also been a priori confidence that the numerical time 
realization of a respective function at the given point 
of space adequately fitted the real physical process. 
Such an adequacy could be successfully checked by 
second-order models involving exact asymptotic solu- 
tions that could be obtained with the alternative, say 
spectral, technique. In other words, there should exist 
a feedback between the method of direct numerical 

simulation and modelling based on ‘adequate’ second- 
order models which could make it possible to perfect 
both approaches aimed ultimately at the solution of 

the practical problems of turbulent transfer. 
The present paper deals with the solution of ‘test’ 

problems concerning the dynamics of the nearly 
homogeneous turbulence of velocity and scalar fields 
on the basis of the second-order model suggested in 
ref. [I]. The nearly homogeneous turbulence here is 
meant to be such which is generated by constant, 
transverse to the motion of fluid, gradients of the 
mean values of velocity and transported scalar. The 
reference to this kind of turbulence is due, on the one 
hand, to its relative simplicity (no factor of turbulent 

diffusion in model equations) allowing comparison 

with the data on direct numerical simulation and, on 
the other hand, to its realistic approximation to the 
shear flow turbulence. 

2. THE DYNAMICS OF A NEARLY 

HOMOGENEOUS VELOCITY FIELD 

The second-order model of a nearly homogeneous 
turbulent velocity field consists of a model differential 
equation for the Reynolds stress tensor 

1 
+(l-dJ36,, ~,+a,(l-du)ai,~, 1 
+uw2~,,+uA~i, +Yuc,,)~k,l = 0 (1) 

and an equation for the turbulent kinetic energy dis- 
sipation rate 

D 2 

I)tE”+(FU**-3P,); = 0 
4 

(2) 

where q2 = u,! is the doubled kinetic energy turbulence 

P, = - 
_dU, ---dU, 
U,U/, z f UjUk dx 

k k 

is the second-rank tensor of the rate of Reynolds stress 
generation due to the mean shear (in the present case 
of nearly homogeneous turbulence a U,/ax, = d U, 1 
dx, = const.) 

is the deviator of the Reynolds stress tensor 
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NOMENCLATURE 

F,,. F,: interaction functions in equation for j.,; squared Taylor microscale of velocrty 

g, field, 5ry’/~,, 

F,, interaction function in equation for E,, I’ kinematic viscosity 

L Taylor macroscale of scalar field, li molecular diffusivity 

6((1’)’ ‘t+, c7 molecular Prandtl number, rjti 

PA turbulent Peclet number, (4’) ’ ‘i,/x oTawo asymptotic value of the turbulent Prandtl 

R time scale ratio. r,,/r, number in the final stage of 

R;,,, time scale ratio in the final stage of decay degeneration of a nearly homogeneous 

of nearly homogeneous scalar field in scalar field in an isotropic velocity field 

isotropic velocity field T time 

& turbulent Reynolds number, (4’)’ ‘&,/v Tr scalar time scale, ?/a, 

q- doubled kinetic energy of turbulence, ul r,, velocity time scale. q2/8,,. 

T mean value of a scalar 

t pulsation of a scalar 
t- scalar variance 

11, vector of velocity fluctuations 
Subscripts 

11, t vector of turbulent flux 
i, ,j. k tensor indices 
0 absence of mean scalar 

L4,LL, second-rank tensor of Reynolds stresses 

U vector of mean velocity 
Cartesian coordinate (i = 1, 2, 3) 

; 
strong turbulence, R, >> 1 

.Y, 
large-scale eddy 

.Y , longitudinal coordinate 
t scalar 
W 

s, transverse coordinate. 
weak turbulence. R, CC 1. 

Greek symbols 

8, rate of scalar variance smearing Superscripts 

G, rate of kinetic energy of turbulence averaging operation 
dissipation 0 virtual origin 

1: squared Taylor microscale of scalar field. * homogeneity 

mt-/E, ** isotropy. 

is the tensor of mean shear 

b,, = 3P,,lp,~ -&, 

is the squared turbulent Reynolds number 

b,, = 2;t +[(cr,/(S,T,*-2))(1 -4,) 

is the deviator of the tensor P,, 

c,, = 3D,,lP,, -&, 

is the deviator of the tensor D,, 
a,, cz 3, 6,, 2 2800, S,:* = 1 l/3, Y,*;” = 14/5 

Di, = - x, 11, G!, z 0.5. 

is the ratio of the turbulent kinetic energy generation 

to the rate of its dissipation 

13 
F_b*(RJ = $1 -d,)+ :4d, = :’ - Isdu 

is the interaction function of turbulent vortices of 
different scales 

d,, = l--2/(1 +,/(l +&JR:)) 

where 

Rf _ 5 W)’ 
1’ & 

I, 

With some assumptions, the above model may yield 
exact asymptotic solutions for the dynamics of a 
nearly homogeneous turbulence. 

2.1. The d_vnamics of a strong (R, >> I ) nearly horno- 
geneous velocit~l field 

Consider turbulence evolving in time and being gen- 
erated by a constant. transverse to the fluid motion, 
mean-velocity gradient d U, /dx2 = const. 

On the assumption of equilibrium of large vortices 
[ 11, i.e. at 

_ _ MU =L. (-u,u,l(dui,ld.u,))lq- = ,I 
7 

q-/s, 
U 

= const, 

r,, q-l&,, 

(3) 
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equations (1) and (2) take on the form 

;a = 2(n,,-s;2 - l)qZ/z, 

D 

where Z, = z, dU,/dx> and the subscript ‘s’ denotes a 
strong turbulence. 

It can be shown that the asymptotic (for Z >> 1) 

solution to system (4) has the form 

+p~-2)2~ (5) 
US us 

where q$ is a fixed value of q’. 

The remaining characteristics of turbulence can be 
represented as 

iFiT2 I 2 ( 4 q- = (n,,?J2 = n",(B,$*-2) = ;nus 
u:/q* N 0.55, Z/T N 0.23 (6) 

where nus N 1.5 x lo-’ is an empirical factor taken 

into account in the relation for b,,. 
Thus, the evolution in time of a strong nearly homo- 

geneous turbulence for Z >> 1 is characterized by an 
exponential growth of kinetic energy and by the 
asymptotic values of the parameters P,, fu and 
(--u,U,/q’). According to solution (5) in this case the 
turbulent Reynolds number 

is also an increasing function of Z. Thus, the transition 

of the initially strong developing nearly homogeneous 

turbulence to the final stage is impossible. 
To check the validity of solutions (5) and (6), the 

Cauchy problem was solved numerically at the initial 

values of turbulence parameters corresponding to the 
experiments of Champagne et al. [2], Harris et al. [3], 
Tavoularis and Corrsin [4]. and Karnik and Tavou- 
laris [5]. The results of numerical modelling are pre- 
sented in Figs. 14. It is seen from Fig. 1 that, depend- 
ing on the initial conditions, at the start of evolution, 
the kinetic energy of turbulence 

E = q’h’/(dU,/dxz)’ 

where h is the lateral dimension of a channel, can be 
a decreasing function of time 

where U, is the centreline velocity. Such a situation is 
realizable at the initial values of the shear parameter 
Is, smaller than unity. At large values of ?, the function 
E approaches the exponential asymptotics (5) attained 
only in some of the experiments considered. 

As presented in Fig. 2. the evolution of the velocity 
time scale t, = (q’/c,) dU,/dxl related to the Taylor 
microscale of length 12 = 5vq’/c, by the relation fu = 
&(1,/h)‘, where R, = (dU,/dx2)h2/r is the mean 
gradient-based Reynolds number, shows that with 
7 >> 1 the parameter ?, tends to the constant universal 
value indicated in solution (5). Unfortunately, the 
lack of experimental data does not allow one to judge 
the adequacy of the modelling of this parameter. 
Nevertheless, it can be said that the individual data of 
refs. [2, 31 fit the numerical curves, whereas the data 
of ref. [4] differ significantly from numerical results. 
Here, it should be borne in mind that the rate of 
dissipation is measured not directly but with resorting 
to the hypothesis of local isotropy thus allowing the 

occurrence of considerable errors in such a sub- 

FIG. I. Evolution of the kinetic energy of nearly homogeneous strong turbulence : 0, undisturbed flow : 
A, M = 2.5 ; 0, M = 5 [5] ; *, ref. [4] ; + , ref. [3] ; 0, ref. [2] ; -, numerical modelling. 



FIG. 2. Evolution of velocity time scale. For notation see Fig. 1. 
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T 

FIG. 3. Evolution of the ratio of the rate of turbulence energy generation to that of dissipation. For 
notation see Fig. 1. 

stantially anisotropic field as is the nearly homo- 
geneous turbulence being investigated. 

The evolution of the shear parameter IsU = -M,u~ 
x (dU,jd.#e, presented in Fig. 3, shows that at large 

values of Z this parameter also tends to the universal 
constant value indicated in solution (6). As regards the 
comparison between the predicted and experimental 
data, the same conclusion can be made as that for the 
previous function fU (or 1:). 

As presented in Fig. 4, the evolution of normal 
and tangential Reynolds stresses related to the kinetic 
energy of turbulence, i.e. of the parameters 
K, I = ~d/q2h 

TT 
K22 = (%wL K,, = - (uluz/q2). 

shows the validity of asymptotic relations (6); as 
regards the empirical data, the indicated asymptotic 
was attained only in one realization of Karnik and 

Tavoularis’ experiment in which the shear was pro- 
duced by a multi-layered fluid flow without a tur- 
bulizor. 

All the experiments indicated above were carried 
out for large initial turbulent Reynolds numbers that 
prevented the possibility of transition to a weak tur- 
bulence. 

2.2. The dynamics @a weak (R,. CC 1) nearly homo- 

geneous velocity field 
On the condition that at the start of evolution the 

turbulence, generated by the lateral velocity gradient. 
is weak and with assumption (3), the system of equa- 
tions (1) and (2) admits an asymptotic (for i >> 1) 
solution such as (5) where the coefficient Fz* is sub- 
stituted by the coefficient F,1;* = 14/5 and II,,, by 
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FIG. 4. Evolution of the ratios of Reynolds stresses to kinetic energy: (a) k,, ; (b) k,,; (c) k,?. Notation 
as in Fig. 1. 



“UM = 1.25 x IO ‘. i.c 

u;/q2 rr 0.62, u2/i2 N 0.25, u;/q’ N 0.13. (8) 

The fundamental difference of solution (7) for q2 

when R, CC I from solution (5) consists of the fact that 
in the case of the weak turbulence considered the 
exponent is the negative quantity the value of which 
is dictated by the coefficients FzL* and?,,,. Thus, in 
weak nearly homogeneous turbulence q* is a decreas- 
ing function of time. 

Unfortunately, experimental realization of the 
mode of a weak nearly homogeneous turbulence is 
unknown to date. Such a situation was the object of 
theoretical studies by Deissler [6] (which provided the 
assessing value for the above given coefficient IZ,,,). 
Comparison of the aforegoing asymptotic solutions 
with the results of Deissler’s analysis shows that the 

data for q’ and u,uZ agree, whereas relations (8) for 
normal stresses are inconsistent with Deissler’s data 
according to which (u,‘/q’) + 0 when t >> I 

2.3. The dynamics of’ a nearly homogeneous velocity 

field at arbitrary R, tralues 

As indicated above, at large initial values of the 
parameter R, the transition of homogeneous tur- 

bulencc to the tinal stage is impossible. At the same 
time, the feasibility of an asymptotically weak ttn- 
bulence in principle. relations (7) and (8). raises the 
question whether or not the transition to the final 
stage is possible at moderate initial values of R,. To 
resolve this question. a conventional numerical expcr- 
iment was carried out with the system of equations 
(I) and (2) at the given initial values for the variables 
corresponding to ref. [4] and at different initial tur- 

bulent Reynolds numbers 

R,’ = 5R,Ef,,. 

The results of numerical simulation of the nearly 

homogeneous turbulence evolution are presented in 
Figs. 5-8 for RF = 1.50, i.e. at R; = 4.6. As is seen 
from Fig. 5, at the start of evolution the parameters 
E and R,. increase just as in the case of a strong 
turbulence. When R,, attains the value approximately 
equal to 6.5, there appears a characteristic inter- 
mediate stretch over which all of the parameters vary 
slowly (see Figs. 668). Beginning from R, 2 6 a rapid 

transition is observed to the final stage which com- 
mences at R; - 0. I. At great values off the numerical 
solution approaches the asymptotics of the final stage, 
relations (7) and (8). 

Thus, the transition of the evolving nearly homo- 

geneous turbulence to the final stage of decay is 
feasible at moderate initial values of the turbulent 
Reynolds number not exceeding Rj = 6.5. 

3. THE DYNAMICS OF A NEARLY 

HOMOGENEOUS SCALAR FIELD 

The second-order model of a nearly homogeneous 

scalar field [I] consists of a model differential equation 

FIG. 5. Evolution of kinetic energy and turbulent Reynolds number R,, = R: up to the final stage of 
degeneration. 
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FIG. 6. Evolution of velocity time scale T,,. 

FIG. 7. Evolution of the parameter p,,. 
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FIG. 8. Evolution of Reynolds stresses: (a) k, a) kz2; (b) k,,. 



for the turbulent flux vector in the isotropic velocity tield [7] 

D- 1 
jpf-p,,+ 11,t = 0 

TM, 

and exact equation for the mean squared Huctuations 
of a scalar 

&?+2(1 -P,)E, = 0 (10) 

and of a model equation for the rate of ‘smearing’ of 
scalar fluctuations 

where 

is the vector of the flux generation rate due to the 
mean lateral shear and to the transverse gradient of 
the mean value of the scalar 

is the quantity reciprocal of the mixed time scale 

If3 - (ft - l)lf”,l +fd 

9,: = S,:*-~,,+d,,f;I’,, 

S,T* = 9,**-2+ id,,, $,5* = 2+fd 
3 ” 

where 

is the parameter of the scale ratio in the final stage of 
degeneration of the nearly homogeneous scalar field 

0 Tab” = ,O (i / ‘!::o~[,_(?J] 

is the turbulent Prandtl number in the final stage of 
degeneration of the nearly homogeneous scalar field 
in the isotropic velocity field. G = vjti is the molecular 
Prandtl number 

1 1 
~~ = -- [1+3P,,/(J,;*-2)], nrsn x IO-‘. 

% nrao 

The above second-order model of a nearly homo- 
geneous scalar field envisages any means of the scalar 
field generation with any way of velocity field gener- 
ation. In the simplest case, a homogeneous isotropic 
degenerating velocity field transports a homogeneous 
isotropic degenerating scalar field. In this case, the 
asymptotic (for R, >> 1, PI >> 1) solution for the evol- 
ution of the velocity and passive scalar fields can be 
presented [8] in the form of power ‘laws’ : 

z,, = (.F”T,‘$*-2)(T+z”) 

7, = (S,,T"-2)(T.ft")/R" 

FL;'"" = const., R = R" = const. (12) 

where 

rn= _iij,~~~-& 
t,s - US - 

is the virtual origin. 
When RA << 1, PA cc 1. the system of isotropic 

equations has the well-known Loitsyanskiy-Corrsin 
solution. 

In a more complex case of r’, = 0 and ls, # 0 the 
velocity field is degenerating isotropic, whereas the 
field of a transported scalar is the simplest nearly 
homogeneous one. Finally, at r’, # 0 and p1 # 0 the 
velocity and scalar fields are nearly homogeneous in 
the general sense. 

To qualitatively analyse the evolution of a nearly 
homogeneous scalar field, introduce the asymptotic 
(for Ri>> 1. Pi >> I and R, K 1, Pi cc 1) hypothesis 
concerning the equilibrium of large scalar ‘vortices’ 
[l] which is analogous to hypothesis (3) 

_ _ +lq’ 7T 
= -.--- ~.__ 

7, F/s, 

(- ~~~/(dTTjdx~~,/q2 = n 

F/E, 
, 

= const (13) 

presumably valid both at pU = 0 and at P, # 0. It can 
be shown with the aid of this hypothesis that the 
equation for r, = t’/~, acquires the form of equation 
(4) for t!,. i.e. in the evolving ultimately strong or 
ultimately weak nearly homogeneous velocity field 
the foIlowing condition holds : 

R = z,>/zr = const. (141 
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3.1. Evolution of a nearly homogeneous scalar field in 
a decaying isotropic velocity field 

Consider the evolution of a scalar field generated 
by a constant transverse mean scalar gradient in a 
decaying isotropic velocity field in two limiting cases : 
strong turbulence, i.e. when R, >> 1, P, >> 1, and weak 
turbulence, i.e. when RA << 1, PI CC 1. 

In the case of strong turbulence, the velocity field 
is determined by solution (12) for q2 and 7,. With the 
use of hypothesis (13), i.e. at 

P, = nrso $ 
2 

( > -~ 

2 h2/t2 (15) 

where the subscript ‘0’ denotes pU = 0, it can be shown 
that the solution of equation (10) for ? has the form 

p = [(p)“_($‘)“](<+ 1)-2R”.*:‘--2) 

where 

+ (92)“(f+ 1) ?/(.F”;* - 3,/c~";'- 2) 
(16) 

x g 2 (ip)“(t”)2 ( 1 
c = z/z”. 

If the initial conditions are such that (S2)” << (t’)“, 
then relation (16) goes over into isotropic solution 
(12). For f >> 1 this relation acquires the form 

j?>> 1 
= (g2)0(~*)2(.P~*-33)i(.P~*-22) = (92)0(~34i5. 

(17) 

This is an asymptotic (for Z >> 1) solution for the 
evolution of? when P,, = 0, R, >> 1, and Pi x 1. With 
the use of this solution, relation (15) takes on the form 

P 
‘/i >> I 

= 1+ w2*-2) 
R” 

(18) 

which indicates that at large times of the evolution of 
a strong nearly homogeneous scalar field in a strong 
degenerating velocity field an equilibrium is attained 
between the generation and ‘dissipation’ of scalar 
fluctuations. In this case also attained is the asymp- 
totic value for the correlation coefficient 

d, = hsoPl. (19) 

In the limit case of a weak turbulence, i.e. when 
R, << 1 and P,: << 1, the velocity field is also described 
by relations (12) for q2 and t,, where 7 >> z”, whereas 
the parameter FU$* is substituted by the parameter 
Y,*,* = 14/5. With the use of hypothesis (15), i.e. at 

P, =nrwo g 

2 

( > -7 z:q2/t- 

the asymptotic solution of differential equation (10) 

for t2 has the form 

z “,*, - 2) 1 dT ’ 
/r >> I = ho (j R CLW” (92: - 3 + R,,“) (-1 dx, 

x(~)"(r")2(~2?'."~-3'!'.~~- 2) _ (f)- I!? (20) 

which is coincident with the form of Dun and Reid’s 
analytical solution [7]. With this solution taken into 
account, the asymptotic relation for the parameter P, 
can be presented as 

PI,? >> I = 1 - (3 --9,*,*)/R,,, (21) 

and the correlation coefficient can be given in the form 

also following from Dun and Reid’s solution. 
To check the validity of asymptotic solutions (17)- 

(19) for R1 >> 1, PA >> 1 and the adequacy of model 
(9)-(11) at arbitrary turbulent Reynolds and Peclet 
numbers, the Cauchy problem was solved numerically 
for the system of differential equations (I), (2) and 
(9)-(11) for P, = 0 under the initial conditions cor- 
responding to the experiment of Sirivat and Warhaft 

[91. 
Figures 9 and 10 present numerical and exper- 

imental results for the evolution of the velocity field 
parameters E = q2/Ui and T, = (q2/&,) U,/M, where 
U, is the flow velocity, M the dimension of a grid cell. 
In accordance with the experiment, two realizations 
of the nearly homogeneous scalar field were fulfilled 
against the background of an almost isotropic degen- 
erating velocity field by means of a heated grid (‘man- 
doline’) and a heated honeycomb (‘toaster’). 

Comparison of the numerical and experimental 
results on the evolution of the scalar field parameters 
in the ‘mandoline’ wake is presented in Figs. II-14 
for two different values of dT/dx,. As follows from 
Fig. 11. which demonstrates the development of 
parameter Q = ?/(dT/dx2)2M’ in time ? = x/M, 
in one of the above experiments the condition 
(92)” << ($0 was realized under which the scalar 
field initially behaves as an isotropic one (see solu- 
tion (16)). Further away the parameter 0 approaches 
the asymptotic power ‘law’ (17). Within the range of 
the Z values studied, there is an excellent agreement 
between the prediction and experiment. The situation 
is less satisfactory in Fig. 12 for the time scale 
T, = (?/&,)Ur/M = (0/6)R,(~,/h4)‘. where R, = 
UT,Mjv. 2: = 6k.?/~,, which probably can be as- 
cribed to a not very accurate measurement of the 
scalar field ‘dissipation’ rate. It seems that the same 
reason is responsible for the fact that along with a 
good agreement between prediction and experiment 
for the lateral heat flux (Fig. 13), there is some dis- 
crepancy between the results compared for the par- 
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FIG. 9. Evolution of the kinetic energy of isotropic turbulence: 0, mandoline; 0, toaster [9] ; -, 
numerical modelling. 
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FIG. 10. Evolution of the time scale of velocity fluctuations. For notation see Fig. 9. 

FIG. II. Evolution of mean squared temperature fluctuations in the mandoline wake. Notation is that 01 
ref. [9]. 
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FIG. 12. Evolution of the time scale of temperature fluctuations. Notation is that of ref. [9], 
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FIG. 13. Evolution of the transverse heat flux q = -G/U,h4dT/dxz in the mandoline wake. Notation 
corresponds to that in ref. [9]. 
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FIG. 14. Evolution of the ratio of the generation rate of temperature fluctuatjons to that of dissipation in 
the mandoiine wake. Notation is that of ref. [9]. 



ameter P, of the ratio between the rates of generation tuations--a ‘toaster’. Comparison of numerical and 
of the ;’ ~arametcr and of its dissipation (Fig. 14). experimental results presented in Figs. IS--- I8 reveals 

A *pure’ experiment las regards the linearity of the their more rigorous agreement in the initial region of 
mean temperature profile) is the experiment with scalar field development. 
another type of generator of temperature flue- Both realizati& considered (‘mandolinc’ and 

FIG. IS, Evolution of temperature fluctuations in the toaster wake. Notation is that of ref. [9] 

FIG. 16. Evolution of the time scale of temperature fluctuations in the toaster wake. Notation is that of 
ref. [9]. 
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FIG. 17. Evolution of the transverse heat flux in the toaster wake [9]. 
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FIG. 18. Evolution of the parameter P, in the toaster wake. 

‘toaster’) were fulfilled at moderate turbulent Reyn- 
olds and Peclet numbers at which, however, the 
asymptotic solution for a strong turbulence (17)-( 19) 
still could be satisfied as follows from the comparison 
of numerical and experimental data. At large values 
of the longitudinal coordinate (or at large evolution 
times), in view of the further decrease of Rn and PA, 
the turbulence evolution should be substantially non- 
similar until inertia effects become so sman that the 
scalar field turbulence dynamics regains its similarity 
which obeys the laws typical of the final stage of 
degeneration (20)-(22). 

The transition to the final degeneration stage was 
investigated numerically by solving the problem at 
hand up to the evolution times at which asymptotics 
(20)-(22) are fulfilled. In what follows, the results of 
the Cauchy problem numerical solution under the 
initial conditions of ref. [9] for ‘mandoline’ at 
dT/dxz = 7.48”C m- I are presented. 

The results of the numerical experiment given in 
Fig. 19 as the plots of E and T,, vs time show that the 
transition of the isotropic velocity field turbulence to 
the final degeneration stage occurs when R, pi 0.25. 
The evolution of the mean squared temperature fluc- 
tuations in Fig. 20 shows that as the turbulence energy 
decays the tem~rature fluctuations first increase (in 
accordance with the asymptotics of the strong scalar 
field turbulence (17)) and then, at sufficiently great 
evolution times (moderate values of R1 and PA) the 
transition to the final stage takes place. At u N 1 this 
occurs at the same time values off as does the final 
stage of velocity degeneration and is given by asymp- 
totics (20). Presented in this figure are afso the results 
of the numerical experiments for great and small 
molecular Prandtl numbers (recall that the second- 
order model (9)-( 11) is universal with respect to this 
parameter). It can be easily seen that with u >> 1 the 
final stage sets in at larger values of Q and with D << 1 

FIG. 19. Numerical modelling of the evolution of turbulence energy and of time scale up to the final stage 
of degeneration. 



FIG. 20. Numerical modelling of the evolution of temperature fluctuations at dl/d.x: = const. in the 
isotropic velocity field up to the final stage of degeneration at different molecular Prandtl numbers: 

l.o=O.73:2,cr=1O-‘;3.cr=103. 

at smaller values of Z as against the case with cr = 1. 
The data given in Figs. 21-25 display the evolution 

(up to the final degeneration stage) of the remaining 
scalar field turbulence parameters: the time scale T, 

(Fig. 21) the time scale ratio R = T,/T, (Fig. 22), 
the lateral heat flux q (Fig. 23): the parameter P, 
representing the ratio of rates of the generation and 
‘dissipation’ of temperature fluctuations (Fig. 24), and 
the correlation coefficient p2,. 

The above numerical experiment was undertaken 
to show, firstly, that the decaying isotropic velocity 
field at large evolution times drives the nearly homo- 
geneous scalar field to the final stage which obeys the 
asymptotic solution of Dun and Reid [7] : secondly, 

that there is an effect of the molecular Prandtl number 
on the degeneration of a weak nearly homogeneous 

scalar field turbulence. 
Note that as the turbulent Reynolds and Peclet 

numbers are interconnected 

the scalar field ‘inertia’ (the parameter P,,) depends, 
apart from R,, also on the parameters c and R, i.e. at 
high values of R, the parameter P, can turn to be 
moderate or even small (at very small values of 0); 
conversely, at small values of R, the parameter PA can 
be rather large (at very high values of a). Such a 

FIG. 21. Results of numerical modelling for the evolution of the time scale of temperature fluctuations 
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FIG. 22. Results of numerical modelling for the evolution of the ratio of time scales. 

FIG. 23. Results of numerical modelling for the evolution of the transverse heat flux. 
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FIG. 24. Results of numerical modelling for the evolution of P, parameter. 
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FIG. 25. Results of numerical modelling for the evolution of velocity-temperature correlation coefficient 
Pzr = ttzf/(E;i)i ‘(TI,“2. 

discrepancy between the inertia of the velocity and 
scalar fields may lead to a non-trivial degeneration of 
the scalar field, especially in the region of moderate 
values of R,, as is demonstrated in Figs. 20-25, namely 
a fast deviation of the scalar field parameters from 
the asymptotics of strong turbulence for tr <. 1, an 
extension of the strong scalar field turbulence asymp- 
totics to the region of moderate values of R, for IJ >> 1. 
This fact is of a fundamental importance for under- 
standing the process of heat and mass transfer not 
only in the simplest constant gradient scalar field but 
in the case of substantially ~nhomogeneous turbulence 
of shear flows. 

3.2. The evolution of a nearly homogeneous scalarBeld 
in a nearly homogeneous velocityjeld 

The nearly homogeneous turbulence of the velocity 
and scalar fields is an approach to actual heat and 
mass transfer processes. The dynamics of such a vel- 
ocity-scalar composition is described jointly by 
models (l), (2) and (9)-( 11). 

To qualitatively analyse the dynamics of a nearly 
homogeneous scalar field in an evolving nearly homo- 
geneous velocity field, consider two limiting cases: 
R,~~l,P,>>landR,<<l,P,<<1. 

In the case of a strong turbulence the velocity field 
is described by asymptotics (5) and (6). Using 

-i- . 
relations (13) and (14) in equation (10) for t- It can 
be shown that its asymptotic (for Z >> 1) solution has 
the form 

With this solution taken into account, the asymp- 
totic relation for the parameter P, can be given as 

PI/, h 1 = 1+(9:*-3)/R: (24) 

analogously to relation (18). Then the asymptotic 

value of the correlation coefficient is attained 

pij, = n,,(g?/i:)t’, (25) 

where the asymptotic quantity F/z is defined by 
relation (6). 

In the case of a weak turbulence the velocity field 
is determined by asymptotic relations (7) and (8). It 
can be shown [l] that asymptotic relations for the 
scalar field have the form of relations (23)-(25) where 
the strong turbulence coefficients are replaced by those 
of weak turbulence : nus by nuwr nrr by nrsr Fut* by F&u*, 

R: by Rw 
To check the validity of the asymptotic solutions 

and the adequacy of the model of arbitrary values of 
the parameters R,, P,, 0 for P, Z 0 and P, # 0, the 
Cauchy problem was solved numerically for the full 
system of equations (I), (2) and (9)-(11) under the 
initial conditions that correspond to the experiment 
of Tavoularis and Corrsin 141. 

Figures 2628 compare numerical and experimental 
data for the temperature field parameters 

where h is the lateral dimension of the region occupied 
by the flow. As follows from the plots, the model 
furnishes quite an adequate description of the exper- 
iment undertaken with a fairly strong turbulence 
(R, = 2 x IO’). Unfortunately, the range of i values 
in the experiment turned to be insufficient for the 
parameters to approach the asymptotics of a strong 
turbulence (as clearly displayed by the data of Figs. 
2628). 

It has been already noted in Section 2 that in the 
case of initially strong nearly homogeneous tur- 
bulence the transition to the final stage is impossible. 
This is also true for a scalar nearly homogeneous 
field. To investigate the approach of the scalar field 
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FIG. 26. Evolution of temperature fluctuations variance at dT/dx, = const., dU,/d.u, = const., R, >> 1 : 
0, ref. [4] ; --, numerical modelling. 
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FIG. 27. Evolution of temperature fluctuations time scale, T,, and of the time scale ratio, R : 
[4] ; -, numerical modelling. 
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FIG. 28. Evolution of the transverse heat flux, q, and parameter p, : 0, q ; q , p, : -, numerical modelhng. 



parameters to the final stage asymptotics. a con- scalar field is fulfilled. The effect of molecular Prandtl 
ventional numerical experiment was made to follow number reveals in the extension. as compared with the 
the development of a scalar field in the weak velocity case g 2 1, of the final stage of tT >> I and its relatively 
field which was considered in Section 2 (Figs. 5-8). early occurrence for CJ CC 1. This effect can be ex- 
The results of this experiment for different molecular plained physically : the processes of turbulent exchange 
Prandtl numbers are presented in Figs. 29932. From enhance with a decrease in CT and diminish with 
the plots given it follows that the analytical asymp- an increase in o. This is most clearly evidenced by the 
totics of the final stage of a weak nearly homogeneous data for the turbulent Prandtl number in Fig. 32. It 

"0 

FIG. 29. Numerical modelling of the evolution of temperature Auctuations variance, 0, at dZ’/dx = const., 
dUjd.u, = const. and moderate values of Rj_ up to the fmai stage of degeneration : I, D = 0.73 ; 2, CT = f O-..’ : 

3. CT = toa. 
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FIG. 30. Numerical modelling for the evolution of the time scale of temperature fluctuations : I, a = 0.73 : 
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FIG. 3 1. Numerical modelling for the evolution of the time scale of ratio, R : I, c = 0.73 : 2, rs = 10w2 ; 3, 
B = IO’. 
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FIG. 32. Numerical modelling of the evolution of the turbulent Prandtl number: 1, 0 = 0.73 ; 2,g = lo-* ; 
3, d = 103. 

should be noted that these data are in contradiction 
with the results of Deissler’s spectral analysis [lo] 
according to which with f>> 1 the parameter a, tends 
to unity irrespective of the magnitude of the molecular 
Prandtl number. The validity of the results obtained 
for the asymptotics f >I 1 could be judged from a 
direct numerical experiment concerned with mod- 
elling the evolution of a weak nearly homogeneous 
scalar field in a weak nearly homogeneous velocity 
field. Unfortunately, to the authors’ knowledge, such 
data are not available. 

4. CONCLUSIONS 

The present work was aimed at the application of 
the earlier proposed [l] dynamic second-order model 
of the nearly homogeneous velocity and passive scalar 
field, which is universal with respect to the turbulent 
Reynolds and Peclet number and to the molecular 
Prandtl number, to the ‘test’ problems concerned with 
the evolution of the fields considered up to the final 
degeneration stage. The following problems have been 
considered : 

(1) evolution of a strong turbulent velocity field 
generated by a constant, transverse to the flow, gradi- 
ent of the mean velocity (nearly homogeneous tur- 
bulence) ; 

(2) evolution of a nearly homogeneous turbulent 
velocity field up to the final stage of degeneration ; 

(3) evolution of a strong nearly homogeneous scalar 
field in a strong decaying homogeneous isotropic vel- 
ocity field ; 

(4) evolution of a nearly homogeneous scalar field 
in a decaying homogeneous isotropic velocity field up 
to the final stage of degeneration ; 

(5) evolution of a nearly homogeneous scalar field 
in a strong nearly homogeneous velocity field ; 

(6) evolution of a nearly homogeneous velocity field 
in a weak nearly homogeneous velocity field up to the 
final stage of degeneration. 

When possible, numerical results were compared 
with experimental data or with the results of analyses 
made by other authors. As the numerical results at 
moderate turbulent Reynolds and Peclet numbers and 
at arbitrary molecular Prandtl numbers are new, it is 
desirable that they were compared with the data of 
direct numerical simulation on the basis of three- 
dimensional non-stationary Navier-Stokes and trans- 
port equations. Unfortunately, such data are lacking 
at present. 

Since the nearly homogeneous velocity and scalar 
fields represent, to a certain extent, the approach to 
the shear flow turbulence, the problems considered 
make it possible to analyse the dynamics of elementary 
events of turbulent transfer in actual turbulent incom- 
pressible fluid flows. 
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MODELISATION DU DEVELOPPEMENT DES CHAMPS DE VITESSE ET DE 
SCALAIRE POUR LA TURBULENCE PRESQUE HOMOGENE 

R&m&On considtre, i partir du modtle au second-ordre suggBr& par Kolovandin et Martynenko 
(Heat/mass transfer in homogeneous turbulence, 9th Int. Heat Transfer Conf., Jerusalem (1990)), la 
mod8isation numerique de la turbulence presque homogbne des champs de vitesse et de scalaire passif 
transport& On ttudie en d&tail l’effet exercC par les facteurs principaux de la g&ration de la turbulence- 
les gradients des valeurs moyennes de vitesse et de scalaire--sur l’tvolution dans le temps des caractkristiques 
statistiques de la turbulence qui, dans le cadre du modble au second ordre, dtterminent les m&canismes du 
transfert turbulent de quantitk de mouvement et de chaleur pour des nombres quelconques de Reynolds 

et de Peclet. 

MODELLIERUNG DER ENTWICKLUNG EINER NAHEZU HOMOGENEN 
TURBULENZ DER GESCHWINDIGKEITS- UND SKALARFELDER 

Zasammenfassung-Auf der Grundlage des Modells zweiter Ordnung von Kolovandin und Martynenko 
(Heat/mass transfer in homogeneous turbulence, 9th Int. Heat Transfer Conf., Jerusalem (1990)) wird 
die nahezu homogene Turbulenz der Geschwindigkeits- und der transportierten passiven Skalar-Felder 
numerisch modelliert. Ziel der Arbeit ist eine detaillierte Untersuchung des grundlegenden Einflusses der 
Turbulenzerzeugung (die Gradienten der mittleren Geschwindigkeit und der skalaren Gr6Ben) auf die 
zeitliche Entwicklung des statistischen Turbulenzverhaltens. Diese bestimmen-innerhalb des Rahmens 
des Modells zweiter Ordnungdie Vorglnge beim turbulenten Impuls- und Wiirmetransport bei beliebiger 

turbulenter Reynolds- und Peclet-Zahl. 

MOAEJI~POBAHME OAHOPOmOn TYPBYJIEHTHOCTW CKAJIRPHOI-0 l-IOJIR 

AHa ocxio~e npeAJIO%iiHoii B npemefi pa6oTe [l] MoneJ’iH s~oporo nopanna pawMaT- 
psinaewn wcnemioe btoflennpoBI(HHe LuIHBMll= o6o6~e~Ho-o.wiopomrol TypByneHmocM Moneti cxo- 
pocrH H nepeIiocEMor0 IIaccHBHOrO CEXJISpa. Pa6oTa HanpasneHa Ha %~aJIb~oe HccJIe,qoBaHHe an~~tfan 

OCHOBH~IX @anropos reHep0poma qp6yneHw~ii-rpam3ewroB ocpemieimba 3Hauemil cropocr~ 
H CIWlXpa Ha 3BOJlIOlVWJ 80 SpfMXIH CTaTHCTH’ICCKHX Xa&WKTCpHCTHK T)‘&leHTHOCTli, OIl~WJl~hD- 

UJISX B paMrax MOAWIH eroporo nopaxxa npowccb~ TypByneHntoro nepeHoca aMnynbca H ‘renna ~IJIH 
h4aCCbI npsi npoH3nonbnbrx 3Haqemnx Typ6yneHTribrx pBce.n Pehonbnca H IIerne H MonexynnpHoro 


